Calmodulin binds to the C terminus of sodium channels Nav1.4 and Nav1.6 and differentially modulates their functional properties.

نویسندگان

  • Raimund I Herzog
  • Chuanju Liu
  • Stephen G Waxman
  • Theodore R Cummins
چکیده

Modulation of voltage-gated sodium channels (VGSC) can have a major impact on cell excitability. Analysis of calmodulin (CaM) binding to GST-fusion proteins containing the C-terminal domains of Nav1.1-Nav1.9 indicates that some of the tetrodotoxin-sensitive VGSC isoforms, including NaV1.4 and NaV1.6, are able to bind CaM in a calcium-independent manner. Here we demonstrate that association with CaM is important for functional expression of NaV1.4 and NaV1.6 VGSCs. Disrupting the interaction between CaM and the C terminus of NaV1.4 and NaV1.6 channels reduced current amplitude by 99 and 62%, respectively. Overexpression of CaM increased the current generated by Nav1.4 and Nav1.6 C-terminal mutant constructs that exhibited intermediate current densities and intermediate binding affinities for CaM, demonstrating that this effect on current density was directly dependent on the ability of the C terminus to bind CaM. In addition to the effects on current density, calmodulin also was able to modulate the inactivation kinetics of Nav1.6, but not Nav1.4, currents in a calcium-dependent manner. Our data demonstrate that CaM can regulate the properties of VGSCs via calcium-dependent and calcium-independent mechanisms and suggest that modulation of neuronal sodium channels may play a role in calcium-dependent neuronal plasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calmodulin Regulation of NaV1.4 Current: Role of Binding to the Carboxyl Terminus

Calmodulin (CaM) regulates steady-state inactivation of sodium currents (Na(V)1.4) in skeletal muscle. Defects in Na current inactivation are associated with pathological muscle conditions such as myotonia and paralysis. The mechanisms of CaM modulation of expression and function of the Na channel are incompletely understood. A physical association between CaM and the intact C terminus of Na(V)...

متن کامل

Subtype specificity of scorpion beta-toxin Tz1 interaction with voltage-gated sodium channels is determined by the pore loop of domain 3.

Voltage-gated sodium (Nav) channels are modulated by a variety of specific neurotoxins. Scorpion beta-toxins affect the voltage-dependence of channel gating: In their presence, Nav channels activate at subthreshold membrane voltages. Previous mutagenesis studies have revealed that the beta-toxin Css4 interacts with the extracellular linker between segments 3 and 4 in domain 2 of Nav channels wi...

متن کامل

Functional Expression of Rat Nav1.6 Voltage-Gated Sodium Channels in HEK293 Cells: Modulation by the Auxiliary β1 Subunit

The Nav1.6 voltage-gated sodium channel α subunit isoform is abundantly expressed in the adult rat brain. To assess the functional modulation of Nav1.6 channels by the auxiliary β1 subunit we expressed the rat Nav1.6 sodium channel α subunit by stable transformation in HEK293 cells either alone or in combination with the rat β1 subunit and assessed the properties of the reconstituted channels b...

متن کامل

Inhibition of Nav1.7 and Nav1.4 sodium channels by trifluoperazine involves the local anesthetic receptor.

The calmodulin (CaM) inhibitor trifluoperazine (TFP) can produce analgesia when given intrathecally to rats; however, the mechanism is not known. We asked whether TFP could modulate the Na(v)1.7 sodium channel, which is highly expressed in the peripheral nervous system and plays an important role in nociception. We show that 500 nM and 2 muM TFP induce major decreases in Na(v)1.7 and Na(v)1.4 c...

متن کامل

Mechanisms of a Human Skeletal Myotonia Produced by Mutation in the C-Terminus of NaV1.4: Is Ca2+ Regulation Defective?

Mutations in the cytoplasmic tail (CT) of voltage gated sodium channels cause a spectrum of inherited diseases of cellular excitability, yet to date only one mutation in the CT of the human skeletal muscle voltage gated sodium channel (hNaV1.4F1705I) has been linked to cold aggravated myotonia. The functional effects of altered regulation of hNaV1.4F1705I are incompletely understood. The locati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 23  شماره 

صفحات  -

تاریخ انتشار 2003